Mark Scheme - AS1.3 Chemical Calculations

1. (a) $2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l)$ (state symbols needed) (i) C(s) allowed as C(gr) or C(graphite) [1] (ii) (if these elements were reacted together) other products would form/ carbon does not react with hydrogen and oxygen under standard conditions [1] (b) (i) energy = 100 × 4.2 × 54 = 22680 [1] (ii) moles ethanol = 0.81/46 = 0.0176 (1)energy change = 22.68 $\Delta H = -1290 (1)$ 0.0176 [3] -ve sign and correct to 3 sf (1) (c) internet value numerically larger (1) heat losses / incomplete combustion / thermal capacity of calorimeter ignored (1) no credit for energy loss [2] $C_3H_7OH + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O$ (ignore state symbols) (d) (i) [1] (ii) negative enthalpy change means energy in bonds broken is less than that in bonds made [1] more bonds broken and made in propanol and therefore more energy (iii) released [1] (e) any 4 from: both conserve carbon / non-renewable fuel sources / fossil fuels / use renewable sources (these gas / liquid) suitable for different uses e.g. ethanol to fuel cars atom economy gasification is less (some C lost as CO2) / CO2 produced in gasification is a greenhouse gas CO is toxic gasification at high temperature / enzymes need low temperature enzyme approach therefore saves fuel / gasification needs more energy [4] 3 max if any reference to destruction of ozone layer QWC [2] The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter (1) Answer has suitable structure (1)

Volume used / cm ³ 20.75 20.20 20.10	20.30	00 10			2
		20.10	20.20	20.75	/olume used / cm ³

3. (a) Low temperature (1)
As temperature is decreased equilibrium moves in exothermic direction. (1)

As pressure is increased equilibrium moves towards side with smaller number of gas moles (1) [4]

QWCThe information is organised clearly and coherently, using specialist vocabulary where appropriate [1]

(b)
$$\Delta$$
Hreaction = Δ H_f products – Δ H_f reactants (1)

$$-46 = \Delta H_f$$
 ethanol $-(52.3 - 242)$

$$\Delta H_f \text{ ethanol} = -46 - 189.7 \tag{1}$$

$$\Delta H_f$$
 ethanol = -235.7 kJ mol⁻¹ (1) [3]

(c) Bonds broken = 1648 + 612 + 926 = 3186 kJ mol⁻¹ (1)

$$\Delta$$
H reaction = 3186 – 3231 = -45 kJ mol⁻¹ (1)

- (d) (i) Average bond enthalpies used (not actual ones) [1]
 - (ii) Yes, since answers are close to each other [1]
- (e) Catalyst is in different (physical) state to reactants [1]

Total [16]

(a)	Plott	ing	(2)	(2)		
	Best	fit line	(1)	[3]		
(b)	(i)	С	(1)			
		Curve steeper	(1)	[2]		
	(ii)	Concentration of acid is greatest		[1]		
(c)	44 c	m ³ (±1 cm ³)		[1]		
(d)	Mole	es Mg = 0.101/24.3 = 0.00416	(1)			
	Mole	es HCl = 2 x 0.02 = 0.04	(1)	[2]		
(e)	(i)	Mg is not the limiting factor /				
		3	[1]			
	(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)			
		Volume $H_2 = 0.01 \times 24 = 0.24 \text{ dm}^3$				
		- correct unit needed	(1)	[2]		
(f)	Low	er the temperature of the acid	(1)			
	Reactants collide with less energy (1)					
	Few	er molecules that have the required acti	vation ener	gy (1)[3]		
or		Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)				
		ction of a form and style of writing appro plexity of subject matter.	priate to pu	rpose [1]		

Total [16]

- (a) to increase rate of reaction / to increase surface area [1]
- (b) MgCO₃ + 2HCl → MgCl₂ + CO₂ + H₂O (ignore state symbols) [1]
- (c) rate starts fast and gradually slows (1)

because concentration becomes less so fewer collisions (per unit time) / less frequent collisions / lower probability of collisions (1)

- (d) all the solid would all have disappeared / if more carbonate is added further effervesœnœ is seen [1]
- (e) (i) volume CO₂ = 200 cm³ (1)

moles
$$CO_2 = 200/24000 = 0.008333 = moles MgCO_3$$
 (1)
[minimum 2 sf] [2]

(ii) mass MgCO₃ =
$$0.008333 \times 84.3 = 0.702 \text{ g}$$
 (1)
% MgCO₃ = $\frac{0.702}{0.889} \times 100 = 79.0\% / 79\%$ [2]

- (e) carbon dioxide is soluble in water / reacts with water (1)
 - volume collected less therefore % / moles of MgCO₃ less (1) [2]
- (f) use of 40.3 and 84.3 (1) atom economy = 40.3 / 84.3 × 100 = 47.8% (1) [2]

Total [14]

(a) Moles NaCl =
$$\frac{900}{58.5}$$
 = 15.38 (1)
Moles Na₂CO₃ = 7.69 (1)
Mass Na₂CO₃ = 7.69 × 106 = 815(.4) g (1) [3]
(b) (i) 2.52 g [1]
(ii) Moles Na₂CO₃ = 0.02 (1)
Moles H₂O = 0.14 (1) x = 7 (1) [2]
(c) (i) Moles = 0.5 × 0.018 = 0.009 [1]
(ii) 0.0045 [1]
(iii) 0.0045 × 106 = 0.477 [1]
(iv) % = 0.477/0.55 = 86.7 % [1]

Total [10]

(a) percentage Be by mass = 5.03% (1)

division of percentage by A_r for Be and at least one other element as shown below (1)

- AI $10.04 \div 27 = 0.3719 \rightarrow 1.00$
- Be 5.03 ÷ 9.01 = 0.5583 → 1.50
- O 53.58 ÷ 16 = 3.3488 → 9.00
- Si 31.35 ÷ 28.1 = 1.1566 → 3.10

molecular formula = $Al_2Be_3O_{18}Si_6$ or x=3 (1) [3]

- (b) (i) Hess' Law states that where a reaction can occur by more than one route the total enthalpy change for each route will be the same [1]
 - (ii) $\Delta H = -393.5 (-395.4)$ (1) = +1.9 kJ mol⁻¹ (1) [2]
 - (iii) Kyran is incorrect as diamond is not the standard state of carbon [1]
 - (iv) I mass of diamond = 7.30 g [1]
 - II mass of graphite = $7.30 \div (93/100)(1) = 7.85 g(1)$ [2]

Total [10]

(b) (i)
$$\frac{(7.25 \times 6) + (92.75 \times 7)}{100}$$
 (1) 6.928 (1) (accept 6.93) [2]

(c) (i)
$$M_r(NH_4)_2SO_4 = 132.18$$
 (1) Moles = 0.0156 (1) [2]

(ii) Moles LiOH =
$$0.0312$$
 (1) Concentration = $\frac{0.0312}{0.0298}$ = 1.05 mol dm^{-3} (1) [2]

(iii) Atom economy =
$$\frac{34.06}{180.08} \times 100$$
 (1) = 18.9% (1) [2]

Total [14]

(a)	(i)	I burette / (graduated) pipette	[1]
		II volumetric / graduated / standard flask	[1]
	(ii)	0.0064	[1]
	(iii)	1.20 g / 100 cm ³ solution	[1]
	(iv)	12.0 g / 100 cm ³ solution	[1]
(b)	(i)	The catalyst is in a different physical state to the reactants.	[1]
	(ii)	Bonds broken 2 H-H \rightarrow 872 1 C-O \rightarrow 360 1 C-H \rightarrow 412 1 O-H \rightarrow 463 1 C=O \rightarrow 743	
		Total +2850 kJ (1)	
		Bonds made 3 C-H → 1236 1 C-O → 360 3 O-H → 1389	
		Total -2985 kJ (1)	
		$\Delta H = 2850 - 2985 = -135 \text{ kJ mol}^{-1}$ (1)	[3]
(c)		ive molecular mass is a relative quantity (based on $^1/_{12}$ th of the 12 C ie unit).	atom [1]
(d)	(i)	The rate of the forward reaction is equal to the rate of the backwareaction.	ard [1]
	(ii)	C ₂ H ₄ O	[1]
		Tota	al [12]

(a)	disso	ghing bottle would not have been washed / diffic olve solid in volumetric flask / final volume would essarily be 250 cm ³		[1]
(b)	Pipe	tte		[1]
(c)		how the end point / when to stop adding acid / n it's neutralised		[1]
(d)	So that a certain volume of acid can be added quickly before adding drop by drop / to save time before doing accurate titrations / to give a rough idea of the end point			
(e)	Тоо	btain a more reliable value		[1]
(f)	(i)	Moles = 0.730/36.5 = 0.0200	(1)	
		Concentration = 0.02/0.1 = 0.200 mol dm ⁻³	(1)	[2]
	(ii)	Moles = 0.2 x 0.0238 = 0.00476		[1]
	(iii)	0.00476		[1]
	(iv)	0.00476 x 10 = 0.0476		[1]
	(v)	$M_r = 1.14/0.0476 = 23.95$		[1]
	(vi)	Lithium - mark consequentially throughout (f)		[1]
			Tota	l [12]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

(g) (i) Orange to green [1]

CrO₄²⁻ (1) Yellow (1) (ii) [2]

Total [20]